The modular version of Maschke's theorem for normal abelian p-Sylows

Murray Gerstenhaber ${ }^{\text {a }}$, Mary E. Schaps ${ }^{\text {b }}$
${ }^{4}$ Department of Mathematics, University of Pennsylvanıa, 33rd \& Walnut Street, Philudelpha, PA 19104. USA
${ }^{\mathrm{b}}$ Department of Mathematics, Bar-Ilan University. Ramat-Gan. Israel 52100

Received 15 March 1995

Abstract

If G is a finte group with abelian normal p-Sylow subgroup P, and F is a sufficiently large ficld of characteristic p, then the group algebra $F G$ can be deformed as an F-algebra to a separable algebra with the same matrix components as in the characteristic zero case.

1991 Math. Subj. Class.: 16S80, 20 J 05

Introduction

Maschke's theorem asserts (in modern terminology) that if G is a finite group and F a ring in which the order $|G|$ of G is invertible, then the group algebra $F G$ is separable. That is, the multiplicative map $F G \otimes_{F} F G, F G$ splits as a map of $F G$-bimodules. (Some equivalent conditions are noted later. A finite-dimensional algebra over a field F is separable if and only if, in older terminology, it is absolutely semisimple, i.e., is semisimple and remains so when coefficients are extended to the algebraic closure of F.) If F is an algebraically closed field of characteristic prime to $|G|$, then $F G$ is a dircet sum of total matric algebras, the number and the dimensions of which are independent of the characteristic of F. For convenience, we refer to these components as those of the characteristic zero case. By contrast, if F has characteristic p dividing $|G|$, then $F G$ has a non-zero radical.

In this case, however, we have the Donald-Flanigan conjecture: $F G$ can be deformed to a direct sum of total matric algebras which have the same dimensions as in the case

[^0]of characteristic 0 . Some special cases have been verified. The case for G abelian is straightforward and was done by Donald and Flanigan themselves [1]. (Here there is, of course, no problem with the dimensions of the matric components.) The problem then seems to have been abandoned until Schaps [7], using Brauer trees, showed that the conjecture holds for G with cyclic p-Sylow subgroups P. When that subgroup is, moreover, normal there is a close connection with the "multicharacteristic" deformation obtained by a finite extension of the integral group ring [8].

In this note we show that if G is a semidirect product $P \gg H$ of a normal p-Sylow P and a p^{\prime}-subgroup H (i.e., one of order prime to p), then (i) a deformation $F P$ can be extended to all of $F G$ iff it is invariant under the actions of H (a virtual tautology), (ii) that when P is abelian there are invariant deformations of $F P$ to separable algebras, and (iii) an extension to $F G$ of such a deformation of G indeed deforms $F G$ to a separable algebra. In particular, the Donald-Flanigan conjecture is therefore verified for the case of an abelian, normal p-Sylow subgroup.

The methods used in this paper, together with a result of Külshammer on the structure of local blocks, have been applied to prove the result for all blocks with abelian normal defect group [5]. In the same paper it is shown that if Broue's conjecture can be proven on the derived equivalences of global and local blocks with abelian defect group, then the Donald-Flanigan conjecture will hold for every block of abelian defect group.

1. Notation

Let G be a finite group, and let p be a prime dividing the order $|G|$ of G. Let F be a field of characteristic p, and denote the group algebra of G over F by $F G$.

By a formal deformation we mean a deformation of an algebra over the parameter ring $F[[t]]$ of formal power series. By an algebraic deformation we mean a deformation of an algebra over a commutative ring R of finite type over F. Usually, R will be the polynomial ring $F[t]$.

Definition. A formal (algebraic) p-modular separable deformation is a formal (algebraic) deformation of $F G$ in which the generic fiber, i.e., the algebra over the quotient field of the parameter ring $F[[t]](R)$ is separable and has a decomposition into matrix blocks identical in degrees to the degrees appearing in the group algebra over an algebraically closed field of non-modular characteristic (i.e., characteristic 0 or prime characteristic not dividing $|G|$).

We are interested in the particular case when G is a semidirect product $P \gg H$ of a normal subgroup P (which in applications will be a p-Sylow subgroup of G) and a subgroup H of p^{\prime} order, i.e., of order not divisible by p. If we denote conjugation $h r h^{-1}$ by r^{h}, then the multiplication in $F G$ is $\left(r_{1} h_{1}\right)\left(r_{2} h_{2}\right)=r_{1} r_{2}^{h_{1}} h_{1} h_{2}$. This is the skew group algebra of H with coefficients in the ring $F P$. We want to extend a p-modular deformation of P to a p-modular deformation of G. The crucial concept in this context is the following.

Definition. Let P be a group, and H a group operating on P. Denote the action of $h \in H$ on $r \in P$ by r^{h}. We say that a formal deformation of $F P$ is H-invariant if for the deformed multiplication

$$
\alpha\left(r_{1}, r_{2}\right)=\sum f_{n}\left(r_{1}, r_{2}\right) t^{n}, \quad r_{1}, r_{2} \in P
$$

we have

$$
\alpha\left(r_{1}^{h}, r_{2}^{h}\right)=\sum f_{n}^{h}\left(r_{1}, r_{2}\right) t^{n},
$$

where $f_{n}^{h}\left(r_{1}, r_{2}\right)=f_{n}\left(r_{1}, r_{2}\right)^{h}$.
This means that the F-vector space automorphism induced on the deformation by an element of H is in fact an F-algebra automorphism. More generally, we will say that any deformation of $F P$ over a commutative ring R is H-invariant if the action of an element h of H is in fact an automorphism of R algebras.

The significance of this concept can be seen in the following observation. Since H has p^{\prime} order, the subalgebra $F H$ of $F G$ is separable. Therefore, any deformation of $F G$ is equivalent to a deformation in which the multiplication of $F H$ is unchanged, and the deformation has trivial cohomology as a deformation of $F H$ modules. This is a trivial corollary of the general theory and the fact that the cohomology of a separable algebra in positive dimension vanishes identically. Thus, if $*$ denotes a deformed multiplication in $F G$, with $r \in P$ and $h \in H$, we will have

$$
\begin{equation*}
r * h=r h . \tag{1}
\end{equation*}
$$

Consequently, to use (1) to extend a deformation of $F P$ to all of $F G$ (on $F H$) we need precisely that the deformation of $F P$ is H-invariant, so that the deformation can be defined as the skew group ring of H with coefficients in the deformation of $F P$.

1. The extension theorem

Lemma. Suppose that a finite group H operates as automorphisms of an F-algebra A with multiplication α, and that \tilde{A} with multiplication \tilde{x} is a deformation of A with the property that $\tilde{\alpha}\left(a^{h}, b^{h}\right)=\tilde{\alpha}^{h}(a, b)$, i.e., that the deformation is invariant under H. Then $\tilde{\alpha}$ can be extended to a deformation of all the skew group algebra $A H$ by setting

$$
\tilde{x}\left(a_{1} h_{1}, a_{2} h_{2}\right)=\tilde{x}\left(a_{1}, a_{2}^{h_{1}}\right) h_{1} h_{2},
$$

the resulting deformation being just the twisted group algebra $\tilde{A} H$.
Proof. The H invariance implies that H still operates as automorphisms of \tilde{A}. The twisted group algebra $\bar{A} H$ is thus a well-defined associative algebra which reduces to $A H$ in the distinguished fiber.

Theorem. Let P, H be subgroups of a finite group G such that $G=P \rtimes H$, and suppose that H has p^{\prime} order, i.e., p does not divide $|H|$. If $A=F P$ has an H-invariant p-modular separable deformation, then $B=F G$ has a p-modular separable deformation.

Proof. Let \tilde{A} be the H invariant p-modular separable deformation of A. By the previous lemma we know that the twisted group ring $\tilde{A} H$ is a p-modular deformation of $F P I I-$ $F G$. It remains only to show that $\tilde{B}=\tilde{A} H$ is generically separable. Let R be the parameter algebra over F with F as residue field at the distinguished prime and K as quotient ring. We know that $\bar{A}=\tilde{A} \otimes_{R} K$ is separable, and we need to show that

$$
\bar{B}=\tilde{B} Q_{R} K=\left(\tilde{A} \otimes_{R} K\right) H
$$

is separable over K.
We now consider the generalization of separability given in [6, Section 10.8] for a subalgebra \bar{A} of an algebra \bar{B}. We want to show that \bar{B} is separable over \bar{A}, for which it suffices to show that there is a separability idempotent $e \in \bar{B} Q_{A} B$ such that $\pi e=e \pi$ for any $\pi \in \bar{B}$ and such that multiplication carries e to 1 in \bar{B}. Since H has p^{\prime} order, we define

$$
e=1 /|H| \sum h \Theta_{A} h^{-1} .
$$

The image of e in \bar{B} is $1 /|H| \sum h h^{-1}=(|H| /|H|) \times 1=1$. To check the equation $\pi e=e \pi$ it suffices to check it on each element $\pi=r h_{1}$ of G, since these form a basis of \vec{B} over K :

$$
\begin{aligned}
r h_{1} \times e & =(1 /|H|) \sum r h_{1}\left(h \otimes_{A} h^{-1}\right) \\
& =(1 /|H|) \sum h_{1} h r^{\left(h_{1} h\right)^{-1}} \otimes_{A} h^{-1} \\
& \left.=(1 /|H|) \sum h_{1} h \otimes_{A} r^{\left(h_{1} h\right)^{-1}} h^{-1}\right) \\
& \left.\left.=(1 /|H|) \sum\left(h_{1} h \otimes_{A}\left(h_{1} h\right)^{-1}\right)\right) r h_{1} h h^{-1}\right) \\
& =e \times r h_{1} .
\end{aligned}
$$

Thus, \bar{B} is separable over \bar{A}. Since \bar{A} is separable over K, we get \bar{B} separable over K, by transitivity of separability [6, Section 10.8], as required.

2. Normal abelian \boldsymbol{p}-Sylow subgroups

We now consider a special case in which we already know that the p-group has a separable deformation - the case of P abelian. In order to establish the p-modular version of Maschke's theorem for normal abelian p-groups, it now suffices to show
that for any automorphism group H of p^{\prime} order, the deformation of P can be chosen H-invariant.

Theorem. If P is an abelian group and H is a p^{\prime}-group acting on P, then P has an H-invariant separable deformation.

Proof. By the classification theorem for abelian groups, P is a direct product of cyclic groups of prime power order. Collecting together all cyclic groups of the same order, we can write

$$
P=P_{1} \times \cdots \times P_{s},
$$

where

$$
P_{t}=C_{p^{2}} \times \cdots \times C_{p^{\prime}} .
$$

Given a p^{\prime}-group of operators H, it is possible to choose the presentation so that each P_{t} is mapped into itself [4, p.280].

The group algebra of a direct product is the tensor product of the group algebras

$$
F P \xrightarrow{\sim} \Omega F P_{1}
$$

The tensor product of deformations of the $F P_{t}$ is a deformation of $F P$. The tensor product of separable algebras is separable [6, Section 10.5].

Thus, we are reduced to proving the theorem where $P=C_{q} \times \cdots \times C_{q}, r$ times, where $q=p^{n}$ is a prime power. As above, the group algebra of the tensor product is the r-fold tensor product of the modular group algebra of C_{q}, which is $F[x] / x^{q}$. Letting x_{1}, \ldots, x_{r} be generators of the various cyclic groups, we therefore have

$$
F P=F\left[x, \ldots, x_{r}\right] /\left(x_{1}^{q}, \ldots, x_{r}^{q}\right) .
$$

We now make one further reduction to the case when F is the finite field \mathbb{F}_{q}. If we can construct an H-invariant p-modular separable deformation of $\mathbb{F}_{q} P$, then we can make a simple extension of scalars to any field containing \mathbb{F}_{q}. The finite field $\mathbb{F}_{p^{n}}$ is contained in $\mathbb{F}_{p^{m}}$ if m is a multiple of n. Thus, in order to find an H-invariant p-modular separable deformation for the original p-group P, which was a product of cyclic subgroups of different orders, we take the least common multiple m of all the exponents in the orders of the cyclic factors, and make an extension of scalars by a field F containing $\mathbb{F}_{p^{m}}$.

Thus, it will suffice to prove the theorem for $P=C_{q} \times \cdots \times C_{q}$ and $F=\mathbb{F}_{q}$. Let J be the radical of $F P$. Since H acts as automorphisms of $P, F P$ is a module over $F H$. Furthermore, J and J^{2} must be submodules, since any automorphisms preserves the radical. $F H$ is separable and J^{2} is a submodule of J, so J must contain a complementary H-submodule N isomorphic to J / J^{2}, and thus of dimension r. Let y_{1}, \ldots, y_{r} be a basis for N; the mapping $\phi: F P \rightarrow F P$ given by $\theta(z)=z^{q}$ is an F-algebra homomorphism because $c^{q}=c$ for all $c \in F=\mathbb{F}_{q}$ and $(z+w)^{q}=z^{q}+w^{q}$. Since $\left(x_{1}, \ldots, x_{r}\right)$
and $\left(y_{1}, \ldots, y_{r}\right)$ generate the same ideal J of $F P$, we conclude that ($x_{1}^{q}, \ldots, x_{r}^{q}$) and $\left(y_{q}^{q}, \ldots, y_{r}^{q}\right)$ also generate the same ideal, and thus $F P \xrightarrow{\sim} F\left[y_{1}, \ldots, y_{r}\right] /\left(y_{1}^{q}, \ldots, y_{r}^{q}\right)$.

We now let t be an indeterminate, and construct a deformation of $F P$:

$$
\tilde{A}=F[t]\left[y_{1}, \ldots, y_{r}\right] /\left(y_{1}^{q}-t^{q-1} y_{1}, \ldots, y_{r}^{q}-t^{q-1} y_{r}\right) .
$$

We claim that this deformation is H -invariant and separable. We begin with H invariance. The deformation is flat, being the tensor product of flat deformations

$$
F[t]\left[y_{l}\right] /\left(y_{l}^{q} \quad t^{q-1} y_{l}\right) .
$$

There is a basis consisting of all monomials with maximum degree $q-1$ in each variable. Since the F-vector space W generated by y_{1}, \ldots, y_{n} is an $F H$-module, for each $h \in H$ we have

$$
y_{t}^{h}=a_{t 1} y_{1}+\cdots+a_{i r} y_{r}, \quad i=1, \ldots, r
$$

and the matrix $\left[a_{l y}\right]$ is nonsingular. Thus, H induces a degree preserving $F H$ algebra automorphism of $F[t]\left[y_{1}, \ldots, v_{r}\right]$ into itself. This automorphism carries the ideal generated by the $y_{i}^{q}-t^{q-1} y_{i}$ into itself, since, using the fact that $a_{i,}^{q}=a_{l \jmath}$, we have

$$
\begin{aligned}
\left(y_{l}^{q}-t^{q-1} y_{l}\right)^{h} & =\left(y_{t}^{h}\right)^{q}-t^{q-1} y_{t}^{h} \\
& =\left(a_{i 1} y_{1}+\cdots+a_{t r} y_{r}\right)^{q}-t^{q-1}\left(a_{i y} y_{t}+\cdots+a_{t r} y_{r}\right) \\
& =\left(a_{i 1}^{q} y_{1}^{q}+\cdots+a_{t r}^{q} y_{r}^{q}\right)-t^{q-1}\left(a_{t \jmath} y_{1}+\cdots+a_{t r} y_{r}\right) \\
& =a_{t 1}\left(y_{1}^{q}-t^{q-1} y_{1}\right)+\cdots+a_{t r}\left(y_{r}^{q}-t^{q-1} y_{r}\right)
\end{aligned}
$$

and the matrix $\left(a_{l j}\right)$ is nonsingular. Thus, H actually induces automorphisms of the quotient algebra \hat{A}, as required

As for separability, we first note that for $t \neq 0$, the polynomial $y_{t}^{q}-t^{q-1} y_{l}$, splits completely into q distinct linear factors $\left(y_{t}-t c\right)$, as c runs over all q elements of the finite field \mathbb{F}_{q}. Thus, each $F[t]\left[y_{t}\right] /\left(y_{t}^{q}-t^{q-1} y_{t}\right)$ is generically separable. Since, as mentioned above, the tensor product of separable algebras is separable, we conclude that \tilde{A} is generically separable, and gives the required H-invariant p-modular separable deformation.

Example. The Klein 4-group $C_{2} \times C_{2}$ has automorphism group isomorphic to S_{3}. Here $p=2$, and the only p^{\prime}-subgroup of S_{3} is C_{3}, the corresponding automorphism being given by cyclic permutation of the nonidentity elements of K_{4}.

We set $F=\mathbb{F}_{2}$. Our problem is to find a C_{3}-invariant p-modular deformation of $F K_{4}$ to F^{4}. Let a and b be generators, and $c=a b$, so that the action of C_{3} is $a \rightarrow b \rightarrow c \rightarrow a$. As described in the proof of the theorem, we must find an H-submodule complementary
to $J^{2}=(e+a+b+c)$. The module generated by $x=a+b$ and $y=b+c$ will be satisfactory, since the action of H is given by

$$
\begin{aligned}
& a+b \rightarrow b+c \rightarrow c+a \rightarrow a+b \\
& x \rightarrow y \rightarrow x+y \rightarrow x
\end{aligned}
$$

The group algebra $F P$ in this basis is still given by

$$
F[x, y] /\left(x^{2}, y^{2}\right) .
$$

The deformation given by the deformed relations is then

$$
F[t][x, y]\left(x^{2}-t x, y^{2}-t y\right) .
$$

If we substitute a nonzero element s of F for t, this ring is isomorphic to F^{4}. The four points correspond to the values 0 and t for x and y.

We note that this deformation is not the only separable deformation, or even the only "natural" deformation.

To see other possibilities, suppose F is enlarged to include a cubed root ω of 1 . Since C_{3} is an abelian group, the irreducible representations on $F K_{4}$ are all one dimensional, with eigenvalues which are cubed roots of one $1, \omega, \omega^{2}$. The eigenspaces are:
(a) $\langle e, a+b+c\rangle$ for $\lambda=1$,
(b) $\left\langle z_{1}=a+\omega b+\omega^{2} c\right\rangle$ for $\lambda=\omega$,
(c) $\left\langle z_{2}=a+\omega^{2} b+a c\right\rangle$ for $\lambda=\omega^{2}$.

Let J be the radical and let $z_{3}-e+a+b+c=(e+a)(e+b)$. Since $J^{2}=\left\langle z_{3}\right\rangle=$ $\langle e+a+b+c\rangle$, the two eigenvectors z_{1} and z_{2} are linearly independent generators of the radical J, and thus

$$
F K_{4} \xrightarrow{\sim} F\left[z_{1}, z_{2}\right] /\left(z_{1}^{2}, z_{2}^{2}\right) .
$$

Let θ be the generator of C_{3}, acting on all of $F\left[z_{1}, z_{2}\right]$ via $\theta\left(z_{1}\right)=\omega z_{1}$, and $\theta\left(z_{2}\right)=$ $\omega^{2} z_{2}$. Since $\theta\left(z_{1}^{2}\right)=\omega^{2} z_{1}^{2}$ and $\theta\left(z_{2}^{2}\right)=\omega^{2} z_{2}^{2}$, we get a C_{3} invariant deformation by taking the ideal ($z_{1}^{2} \quad t z_{2}, z_{2}^{2} \quad t z_{1}$), because z_{1}^{2} and z_{2} have the same eigenvalue ω^{2}, and z_{2}^{2}, z_{1} have the same eigenvalue ω. This corresponds to a multiplication

$$
\begin{array}{lll}
\alpha\left(z_{1}, z_{1}\right)=t z_{2}, & a\left(z_{l}, z_{3}\right)=t^{2} z_{l}, & i=1,2, \\
\alpha\left(z_{2}, z_{2}\right)=t z_{1}, & a\left(z_{3}, z_{l}\right)=t^{2} z_{l}, & i=1,2, \\
\alpha\left(z_{1}, z_{2}\right)=z_{3}, & a\left(z_{3}, z_{3}\right)=t^{2} z_{3}, & \\
x\left(z_{2}, z_{1}\right)=z_{3} . &
\end{array}
$$

This can be rewritten as $F\left[z_{1}\right] / z_{1}^{4}-t^{3} z_{1}$, which factors completely into a drrect sum of $F\left[z_{1}\right] / z_{1}-a_{t} t, \quad a_{i}=0,1, \omega, \omega^{2}$.

Additional note: Although it is not relevant to the extension theorem, it is actually possible to find a first order 2-modular semisimple deformation of $F K_{4}$ which is invari-
ant under the entire automorphism group $\operatorname{Aut}\left(K_{4}\right) \xrightarrow{\sim} S_{3}$. Since the desired deformation is commutative, it is necessary to find a first-order deformation over $F[\varepsilon], \varepsilon^{2}=0$,

$$
F[\varepsilon][x, y] /\left(x^{2}-\varepsilon\left(a_{1} x+b_{1} y+c_{1} x y\right), y^{2}-\varepsilon\left(a_{2} x+b_{2} y+c_{2} x y\right)\right) .
$$

Subjecting this deformation to all possible automorphisms produces only one possibility, up to multiplication of ε by a constant:

$$
F[\varepsilon][x, y] /\left(x^{2}-\varepsilon(x+x y), y^{2}-\varepsilon(y+x y)\right) .
$$

References

[1] J D. Donald and D. Flanigan A deformation-theoretic version of Maschke's theorem for modular group algebras: the commutative case, J. Algebra 29 (1974) 98-102.
[2] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math. 78 (1963) 267-288.
[3] M. Gerstenhaber and S.D. Schack, Relative Hochschild cohomology, rugid algebras, and the Bockstein. J. Pure Appl. Algebra 43 (1986) 53-74.
[4] B. Huppert and N. Blackburn, Finte Groups II (Springer, Berlin, 1982)
[5] C. Mejer and M. Schaps, Separable deformations of blocks with abelian normal defect group and of derived equivalent global blocks, Proc. ICRA VII, Can J Math. Conf. Proc. (1996).
[6] R Pierce, Associative Algebras, Graduate Texts in Mathematics, Vol 88 (Springer, Berlin, 1980)
[7] M. Schaps, A moduler version of Maschke's theorem, J. Algebra 163 (1994) 623635.
[8] M. Schaps, Integral and p-modular semisimple deformations for p-solvable groups of finite representation type, Austral. J. Math. Ser. A 50 (1991) 213-232.

[^0]: * Corresponding author

